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A density functional theory of freezing combined with a thermodynamically consistent integral equation
method is used to predict the phase diagram of rigid C60 molecules interacting via the Girifalco potential. It is
found that the freezing line crosses the liquid-vapor binodal lines near the critical point and the liquid phase
exists in a very narrow range of temperatures~,20 K!, in qualitative agreement with the molecular dynamics
~MD! simulations of Chenget al.But, quantitatively, the present result falls between the MD simulations and
the Monte Carlo simulations of Hagenet al., the latter of which have predicted nonexistence of a liquid phase.
@S1063-651X~96!00110-9#

PACS number~s!: 64.70.Dv, 64.30.1t, 64.70.Fx

Since the discovery of fullerenes@1# most studies have
focused on the isolated molecules and the solid phases at low
temperatures. Recently, the phase behavior of C60 at high
temperatures has also stimulated increasing interest@2–4#.
One of the issues raised by the recent simulation studies is
whether C60 has a liquid phase as the thermodynamically
stable phase. Using the same intermolecular potential pro-
posed by Girifalco@5#, Hagenet al. have performed Monte
Carlo~MC! simulations and concluded that C60 has no liquid
phase@3#, whereas the molecular dynamics~MD! simula-
tions of Chenget al.have predicted the existence of a liquid
in a narrow range of temperatures@4#. The Girifalco potential
used in these simulations was constructed by assuming that
the carbon atoms on different C60 molecules interact through
a Lennard-Jones~LJ! potential and by averaging the intermo-
lecular potential over all relative orientations of the two
C60 molecules. The pair potential between C60 molecules
obtained in this way significantly differs from the LJ form in
that its attractive part decays more rapidly than that of the LJ
form as the intermolecular separation becomes large@5#. The
effects of short-rangedness of intermolecular potentials on
the phase behavior and the solid-to-solid transition have been
investigated for some model systems with varying ranges of
attractive forces@6–15#. Some of these studies have shown
that the liquid-vapor coexisting region is immersed in the
solid-fluid coexisting region and a liquid phase exists no
more as the attractive part of pair potentials becomes suffi-
ciently short ranged@6–10#. The simulation studies on C60
suggest that C60 is a substance near the border separating
existence and nonexistence of a liquid phase@3,4#, but its
phase behavior is still inconclusive.

In the present contribution we report our theoretical cal-
culations for the phase diagram of C60 based on the same
Girifalco potential. We use a density functional theory~DFT!
of freezing combined with a thermodynamically consistent
integral equation method. Since the pioneering work of Ra-
makrishnan and Yussouff@16#, the DFT of freezing has been
recognized as a powerful tool in the study of solid-fluid
phase transitions@17#. In the present study we have used a
generalized version of the modified weighted-density ap-
proximation ~MWDA ! developed by Denton and Ashcroft
@18#. This generalized MWDA~GMWDA! is based on the

idea of the thermodynamic perturbation theory developed for
uniform liquids @19# and has been applied to predict the
solid-liquid phase transition of the classical one-component
plasma ~OCP! and the inverse-power systems@20#. The
GMWDA is summarized in the following.

We consider a system interacting through a pair potential
f(r ), and start with splitting f(r ) into two parts,
f(r )5f0(r )1Df(r ), wheref0(r ) is a repulsive, short-
ranged part andDf(r ) is the remaining long-ranged part.
The free energy of the system as a functional of~number!
densityr(r … is then written, in accordance with this splitting,
as

F@r#5F id@r#1F0, ex@r#1F1@r#, ~1!

whereF id@r# is the ideal-gas contribution,F0,ex@r# the ex-
cess free energy of thereferencesystem interacting through
f0(r ), andF1@r# the contribution due toDf(r ). The func-
tional form ofF id@r# is known as@17#

F id@r#5b21E drr~r !$ ln@r~r !L3#21%, ~2!

where b51/kBT and L is the thermal de Broglie wave-
length. Various versions have been developed based on this
approach and major differences between them consist in the
choice of the reference system and in the treatment of
F1@r# @20–23#. For an appropriate potential separation the
reference free energyF0,ex@r# is mostly entropic and the
contributionF1@r# accounts for most of the excess internal
energy. Curtin and Ashcroft noted the importance of treating
these contributions to the free energy by separate approxima-
tions @21#. Following the MWDA and others@17#, we make
separate global thermodynamic mappings forF0,ex@r# and
F1@r#:

F0,ex@r#'Nf0,ex~ r̂0! ~3a!

and

F1@r#'Nf1~ r̂1!, ~3b!
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whereN is the number of particles in the system,f 0,ex(r) the
excess free energy per particle of a homogeneous reference
fluid, and f 1(r)5 f ex(r)2 f 0,ex(r), f ex(r) being the total
excess free energy of the system. We assume that the
effective-liquid densitites,r̂0 and r̂1, are given, as in the
MWDA, by

r̂05
1

NE dr1E dr2r~r1!r~r2!w0~r 12; r̂0! ~4a!

and

r̂15
1

NE dr1E dr2r~r1!r~r2!w1~r 12; r̂1!, ~4b!

wherer 125ur12r2u. The weight functionsw0 andw1, as yet
unspecified, are determined in the same way as that of the
original MWDA @18#. More specifically, we require that both
w0 andw1 be normalized and that approximateF0,ex@r# and
F1@r# in Eq. ~3! exactly reproduce the corresponding two-
body direct correlation functions~DCF’s!, C0

(2)(r ;r) and
DC(2)(r ;r)5C(2)(r ;r)2C0

(2)(r ;r), in the limit of a uni-
form density. HereC0

(2) andC(2) are the DCF’s of the ref-
erence and full systems, respectively. Unique specifications
of the weight functions follow from these requirements and
the substitutions of these results into Eqs.~4a! and~4b! lead
to the implicit equations forr̂0 and r̂1 @20#,

~ r̂02 r̄ !b f 0,ex8 ~ r̂0!52
1

2NE dr1E dr2Dr~r1!Dr~r2!

3C0
~2!~r 12; r̂0! ~5a!

and

~ r̂12 r̄ !b f 18~ r̂1!52
1

2NE dr1E dr2Dr~r1!Dr~r2!

3DC~2!~r 12; r̂1!, ~5b!

where f 0,ex8 (r)5] f 0,ex(r)/]r, f 18(r)5] f 1(r)/]r, and
Dr(r )5r(r )2 r̄, r̄ being the average density of the solid
under consideration. We note that bothr̂0 and r̂1 are func-
tionals ofr(r ) and are determined by solving Eqs.~5a! and
~5b!, respectively, for a givenr(r ). The approximate excess
free energy per particle of the solid phase is then given by

b f ex@r#'b f 0,ex~ r̂0!1b f 1~ r̂1!. ~6!

We have applied the above theory to the inverse-power
systems withf(r )5«(s/r )n and found that the theory pre-
dicts the fcc-solid-liquid phase boundaries in agreement with
the MC results within 5%, although it does not necessarily
predict the correct equilibrium crystal structure~i.e., bcc for
n,7 and fcc forn.7) of the solid coexisting with the liquid
@20#. We have also confirmed thatr̂0! r̄ and r̂1'r̄ for a
stabilized solid in the variational calculations described be-
low. The large difference betweenr̂0 and r̂1 provides a
simple, intuitive explanation for the reason why the MWDA
and other theories utilizing the thermodynamic mapping on a
single effective liquid fail for systems with long-ranged or
attractive forces. As noted above, the contributionF0,ex@r# is

mostly entropic and the large difference betweenr̂0 andr̄ is
a consequence of the fact that the excess entropy of the solid
is much smaller~in magnitude! than that of the liquid with
the same density. On the other hand, the contribution
F1@r# accounting for most of the excess internal energy is
not much different in the solid and the liquid phases. Conse-
quently,r̂1 andr̄ should not differ so much from each other,
as actually confirmed@20#, and the term on the right-hand-
side of Eq.~5b! should be small, which is nothing but the
situation where the second-order perturbation theory~SPT! is
expected to work well forF1@r#5Nf1@r#. In this SPT we
have

b f 1@r#'b f 1~ r̄ !2
1

2NE dr1E dr2Dr~r1!Dr~r2!DC
~2!

3~r 12; r̄ !. ~7!

Curtin and Ashcroft have used Eq.~7! together with the
hard-sphere~HS! reference system and successfully calcu-
lated the phase diagram of the LJ system@21#.

In the application of the above theory to C60 we used the
potential separation proposed by Weeks, Chander, and
Andersen~WCA! @24#.

f0~r !5H f~r !2f~r 0, r,r 0

0, r.r 0 , ~8!

wherer 0 is the separation at whichf(r ) takes the principal
minimum. For the Girifalco potential we have
x05r 0/2a51.416 342, where 2a is the diameter of a spheri-
cal C60 given by 2a50.71 nm@5#.

The modified hypernetted-chain~MHNC! theory@25# was
used to calculate the equation of state and the DCF’s of the
systems interacting throughf(r ) and f0(r ), which are a
necessary input to solve Eqs.~5a! and~5b! and to determine
the liquid-vapor phase boundary. Several versions in the con-
text of the MHNC theory have been proposed, and their dif-
ferences consist in dealing with the hard-sphere bridge func-
tion BHS(r ) used in this theory. In his study on the phase
diagram of C60 molecular fluid@26#, Caccamo has used the
BHS(r ) obtained from the Verlet-Weis parametrization of the
HS radial distribution function@27,28#, and imposed the
thermodynamic consistency between the virial pressure and
the compressibility equations to specify the parameter of
BHS(r ). We took essentially the same approach but solved
the MHNC equation for the full system withf(r ) by using
the method of Ng@29#, which is essential for Coulombic
systems and provides an efficient way for other systems with
long-ranged potentials. In this method the long-range tail of
the DCF due to that off(r ), Df(r ) in the present case, is
separated out and we solve the MHNC equation for
Cs(r )5C(r )1bDf(r ). In solving the MHNC equation we
used a grid spacingDx50.025(x5r /2a) and a grid of 1024
points with an extra fine grid spacingDx50.0025 in the core
region wheref(r ) or f0(r ) and henceC(r ) exhibit rapid
changes.

In the calculations of the free energy of the solid phase in
the GMWDA we followed the common practice and used a
variational method, in which the density distribution in the
solid was parametrized and given by the sum of the Gauss-
ians peaked at each site of a periodic lattice,@Ri #:
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r~r !5S a

p D 3/2(
i
exp@2a~r2Ri !

2#. ~9!

Then, the variational principle for the free energy reduces to
a minimization ofF@r#5Nf(r;a) with respect toa. We
assumed the fcc crystal structure for the C60 solid phase.

Figure 1 illustrates the calculated free energies of the
solid relative to the liquid with the same density, which plays
a crucial role in determining the solid-liquid phase boundary:

bD f ~r!5b f solid~r!2b f liq~r!, ~10!

where f liq(r)[ f (r;a50) and f solid(r)[ f (r;a), with a
minimizing f . The most popular practice in the approach
described above has been to employ the HS reference system
@21–23#, and Fig. 1 also contains the results of such calcu-
lations for comparison. In these calculations the reference
HS parameters were determined by applying the method of
Andersen and co-workers@19,30# to the WCA reference sys-
tem ~8!. The corresponding MWDA equation~5a! was
solved by using both the virtually exact Verlet-Weis~VW!
@27,28# and the approximate Percus-Yevick~PY! DCF’s.
Hereafter, these types of calculations are denoted HS-VW
and HS-PY, respectively. The use of the PY DCF has been
justified based on the observation that for a realistic solid
with largea the solutionr̂0 to Eq.~5a! is much smaller than
r̄, the average density of the solid under consideration, and
for such ar̂0 the PY DCF is quite reasonable. In all these
calculations the accurate Carnahan-Starling@19# result was
used for f 0,ex(r)[ fHS,ex(r) in ~5a! and the contribution
f 1@r# was calculated by the SPT~7! with the use of the
accurateDC(r ; r̄) obtained from the present MHNC result
for C(r ; r̄) and the VW result forC0(r ; r̄)[CHS(r ; r̄). We
find in Fig. 1 that the HS-VW and the HS-PY yield quite
different results forbD f (r), contrary to the previous expec-

tation. Both of thesebD f (r) decrease too rapidly withr and
yield too large negative contributions to the pressures of the
solid at high densities to establish a phase equilibrium of the
solid and the liquid. The previous reexaminations of the
MWDA and the generalized effective-liquid approximation
~GELA! of Lutsko and Baus@31# revealed that the use of an
accurate DCF in place of the approximate PY DCF in these
theories slightly worsens the predicted HS freezing param-
eters, which is an unfavorable feature from a theoretical
point of view @32#. Furthermore, such a feature becomes
much more serious when the HS system is used as the ref-
erence system for systems with long-ranged potentials, as
actually confirmed for the OCP@32#. Such a situation is com-
mon to C60, and it seems that the defect of using the HS
reference system is compensated by that of the approximate
PY DCF, but we need further examinations to clarify the
defect of using the HS reference system for C60. In the
following we consider only the results of the GMWDA
based on the WCA reference system~8! and the input data
obtained by the thermodynamically consistent integral equa-
tion method.

The phase boundary was determined by enforcing equal-
ity of pressures and chemical potentials in the two coexisting
phases at fixed temperature. The phase diagram of C60 cal-
culated in this way is shown in Fig. 2. We find that the
freezing line crosses the liquid-vapor binodal lines at
T'1940 K slightly ('20 K! below the estimated liquid-
vapor critical temperatureTc , and a liquid phase does exist
in a very narrow range of temperatures. This result is in
qualitative agreement with the MD simulations@4#, which
have predicted the existence of a liquid phase in a much
wider range, i.e., between 1700 and 1950 K. The liquid-
vapor coexisting region is determined solely by the equation
of state of uniform fluids, and the present and other results
@4,29# based on the thermodynamically consistent integral
equation methods are quite similar, suggesting that the result
of this part is well established. The liquid-vapor coexisting
region predicted by the MD simulations is much narrower

FIG. 1. Comparisons of the free energies of the fcc solid C60

relative to the liquid@Eq. ~10!# at T52100 K calculated by the
present GMWDA with the WCA reference system~8! ~full line!
and by the method of using the HS reference system with the VW
DCF ~HS-VW! and the PY DCF~HS-PY!. The result obtained us-
ing the SPT forb f 1@r# @Eq. ~7!# ~dotted line! is almost indistin-
guishable from the GMWDA result.

FIG. 2. Phase boundaries predicted by the present theory~filled
circles and full lines!. Open circles, metastable liquid-vapor binodal
lines; triangles, rectilinear rule used to locate the critical point
~cross!; dashed line, freezing line determined by the one-phase cri-
terion @Eq. ~11!#.
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than these theoretical results, and it seems that the MD simu-
lations have detected the boundary of absolute instability,
i.e., negative compressibility. The present result for the
freezing line falls at somewhat lower densities than the MD
result, leading to a narrower range of a liquid phase.

We note that the predicted phase diagram of C60 is rather
sensitive to the input data within the GMWDA. Prior to the
present work we tried the input data obtained by the varia-
tional MHNC @33#. The pressure and the compressibility
equations of state obtained by this method are different, and
the inconsistency is larger at higher densities. While the
liquid-vapor critical points estimated by using these input
data are almost the same as those in Fig. 2, the predicted
freezing lines are quite different. In fact, if we use the input
data from the pressure equation, the freezing line passes
about 100 K above the critical point, whereas it moves down
a great deal, yielding the triple point at'1800 K, if we use
the input data from the compressibility equation. These re-
sults suggest the importance of using thermodynamically
consistent input data.

Figure 2 also contains the freezing line determined by the
one-phase criterion introduced by Giaquinta and Giunta@34#,

Dsex[sex2sex
~2!50. ~11!

Heresex is the exact excess entropy andsex
(2) the two-particle

contribution tosex given by

sex
~2!52 1

2kBrE dr$g~r !ln@g~r !#2@g~r !21#%, ~12!

whereg(r ) is the radial distribution function. The empirical
criterion Eq.~11! has been found to give a good prediction of
the HS freezing@34# and used by Caccamo in the study of
the phase diagram of C60 @26#. The present result for the
freezing line determined by Eq.~11! is essentially the same
as that of Caccamo and falls at much higher densities than
the
GMWDA result. It seems that the one-phase criterion~11!
overestimates the freezing density of systems with soft-core
or long-ranged potentials. Figure 3 illustrates our results of
Dsex for the OCP, the extreme case of the long-ranged po-
tential, together with the result for the HS system for com-

parison. We confirmed thatDsex50 occurs ath50.499 for
the HS system, in good agreement with the freezing point,
h50.494, obtained by the MC simulations@35#. On the other
hand, the freezing~and melting! point of the OCP deter-
mined by Eq.~11! falls atG'230, which is much larger than
the MC results,G'170–180@36,37#. Here G is the usual
plasma parameter proportional tor1/3.

Next, we are concerned with the MC simulation results of
Hagenet al. @3#, which are qualitatively different from the
MD and the present results. We note that in the MC simula-
tions the pair potentialf(r ) was truncated atr52s, where
s is the distance at whichf(r ) crosses zero, and the pre-
dictedTC was'1800 K, about 10% lower than the present
and the MD simulation results. This lowTC might be a con-
sequence of the truncation of the potential as suggested by
the MC simulations for the LJ fluids, in whichTC is about
20% lowered by truncating~and shifting! the LJ potential at
r52.5s @38#. Since the long-range tail of the C60 pair po-
tential is much smaller in magnitude than that of the LJ
potential, such a truncation effect onTC should be much
smaller in C60 but may not necessarily be ignored. In fact, if
we shift upwards the MC result of the liquid-vapor coexist-
ing region about 10%, the resulting phase diagram is quite
similar to the present result. More quantitative investigations
of the truncation effect on the phase diagram of C60 are in
progress.

Our final concern is the experimental feasibility of testing
the theoretical predictions. The estimated liquid-vapor criti-
cal pressure is'32 bar and not so high as to cause any
experimental difficulty, but the temperatures of interest
(T.1900 K! are not easily accessible experimentally. As for
the validity of the model of rigid C60 molecules, the recent
ab initioMD simulations have predicted that a C60 molecule
is stable against fragmentation up to 4500 K@39#. However,
polymerizations of C60 molecules seem to occur well below
the temperatures of interest@40#, which could be practically
the most serious hindrance to experiments.

We have applied the GMWDA combined with an integral
equation method to the calculations of the phase diagram of
the rigid C60molecules and found that the results support the
existence of a liquid phase, albeit in a very narrow range of
temperatures. However, the result is still not very conclusive,
since it might depend rather sensitively on the theoretical
ingredient, especially on the DFT of freezing used to calcu-
late the equation of state of the solid phase. We may safely
conclude that we have confirmed that the rigid C60 is a criti-
cal substance that might have a liquid phase or not. More
systematic investigations will be required to clarify the inter-
relation between the nature of pair potentials and the phase
behavior, and such a theoretical investigation on the systems
with n-m potentials is in progress as a reinforcement of the
simulation studies of Hafskjold@10#.
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FIG. 3. Multiparticle contribution to the excess entropy of the
hard-spheres~HS! and the classical one-component plasma~OCP!.
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