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Density functional theory for the phase diagram of rigid Cs, molecules

M. Hasegawa and K. Ohnd&
!Department of Materials Science and Technology, Faculty of Engineering, Iwate University, Morioka 020, Japan
2Institute for Materials Research, Tohoku University, Sendai 980-77, Japan
(Received 4 April 1996

A density functional theory of freezing combined with a thermodynamically consistent integral equation
method is used to predict the phase diagram of rigig r@olecules interacting via the Girifalco potential. It is
found that the freezing line crosses the liquid-vapor binodal lines near the critical point and the liquid phase
exists in a very narrow range of temperatu¢e0 K), in qualitative agreement with the molecular dynamics
(MD) simulations of Chengt al. But, quantitatively, the present result falls between the MD simulations and
the Monte Carlo simulations of Hagen al,, the latter of which have predicted nonexistence of a liquid phase.
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Since the discovery of fullerendd] most studies have idea of the thermodynamic perturbation theory developed for
focused on the isolated molecules and the solid phases at lowniform liquids [19] and has been applied to predict the
temperatures. Recently, the phase behavior gf & high  solid-liquid phase transition of the classical one-component
temperatures has also stimulated increasing int¢eest].  plasma (OCP and the inverse-power systeni0]. The
One of the issues raised by the recent simulation studies EMWDA is summarized in the following.
whether G has a liquid phase as the thermodynamically We consider a system interacting through a pair potential
stable phase. Using the same intermolecular potential prop(r), and start with splitting ¢(r) into two parts,
posed by Girifalcd5], Hagenet al. have performed Monte ¢(r)= ¢o(r) +A¢p(r), where ¢y(r) is a repulsive, short-
Carlo(MC) simulations and concluded thagghas no liqguid  ranged part and\ ¢(r) is the remaining long-ranged part.
phase[3], whereas the molecular dynami¢®ID) simula- The free energy of the system as a functionalrmimbey
tions of Chenget al. have predicted the existence of a liquid densityp(r) is then written, in accordance with this splitting,
in a narrow range of temperaturigd. The Girifalco potential as
used in these simulations was constructed by assuming that
the carbon atoms on differentggmolecules interact through Flpl=Fidp]l+Fo elp]ltFilp], 1
a Lennard-Joned J) potential and by averaging the intermo-

lecular potential over all relative orientations of the two whereF [p] is the ideal-gas contributiors, [ p] the ex-
Ceo molecules. The pair potential between,Gnolecules  cess free energy of theferencesystem interacting through

obta?ned in th_is way significantly differs_ from the LJ formin 4 (r), andF4[p] the contribution due ta ¢(r). The func-
that its attractive part decays more rapidly than that of the Ldjonal form of F,4[p] is known ag17]

form as the intermolecular separation becomes IgB#jeThe

effects of short-rangedness of intermolecular potentials on

the phase behavior and the solid-to-solid transition have been Fid[p]zﬂflf drp(r){In[p(r)A3]—1}, 2
investigated for some model systems with varying ranges of

attractive forceg6—15]. Some of these studies have shown
that the liquid-vapor coexisting region is immersed in the
solid-fluid coexisting region and a liquid phase exists no i : e
more as the attractive part of pair potentials becomes Suff@pp_roach and major differences between them consist in the
ciently short ranged6—10. The simulation studies on g choice of the reference system and n the treatment of
suggest that ¢, is a substance near the border separatingfl[p] [20—23. For an appropriate potential separation the

existence and nonexistence of a liquid phf3dl], but its efetrgt;\ctt_e frge energl}oye{p]f IS mof“)]f ter‘]ntroplc an_dtthe |
phase behavior is still inconclusive. contributionF4[ p] accounts for most of the excess interna

In the present contribution we report our theoretical Cal_‘?hneesrg)(l:.oi?rirlt)igt%r::js f‘;?ﬁg‘;tegoéﬁgrg‘;g';‘ggg:rnai: g;greo‘i‘(tiir?]%
culations for the phase diagram ofg{based on the same . : ]
Girifalco potential. We use a density functional the(DFT) tions[21]. Following the MWDA and other§17], we make

of freezing combined with a thermodynamically consistent>cParate global thermodynamic mappings Fefe[p] and

integral equation method. Since the pioneering work of Ra-Fl pl:

makrishnan and Yussoufi6], the DFT of freezing has been .

recognized as a powerful tool in the study of solid-fluid Foelp]=~Nfoelpo) (3a)
phase transitiongl7]. In the present study we have used a

generalized version of the modified weighted-density apand

proximation (MWDA) developed by Denton and Ashcroft

[18]. This generalized MWDAGMWDA) is based on the Filp]=Nfi(pq), (3b)

where 8=1/kgT and A is the thermal de Broglie wave-
length. Various versions have been developed based on this
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whereN is the number of particles in the systefg.{p) the  mostly entropic and the large difference betwggrandp is
excess free energy per particle of a homogeneous referenaeconsequence of the fact that the excess entropy of the solid
fluid, and f1(p)=fedp) —foedp), fex(p) being the total is much smallein magnitudg than that of the liquid with
excess free energy of the system. We assume that tiBe same density. On the other hand, the contribution

effective-liquid densititesp, and p,;, are given, as in the Fi[p] accounting for most of the excess internal energy is
MWDA, by not much different in the solid and the liquid phases. Conse-

quently,p, andp should not differ so much from each other,
1 R as actually confirmed20], and the term on the right-hand-
pozﬁf drlj dr,p(r1)p(ra)Wo(ri2;po) (48 side of Eq.(5b) should be small, which is nothing but the

situation where the second-order perturbation thésB) is

expected to work well folF [ p]=Nf[p]. In this SPT we

and
have
p1= 1f d f d P 4b 1
pl_ﬁ i r2p(rl)p(r2)wl(r121pl)! ( ) Bfl[p]mﬁfl(ﬁ_ mf drlf drzAp(rl)Ap(rz)AC(z)
wherer 1,=|r;—r,|. The weight functionsv, andw,, as yet X(F1p0p). @

unspecified, are determined in the same way as that of the

original MWDA [18]. More specifically, we require that both Curtin and Ashcroft have used E¢7) together with the

W, andw; be normalized and that approximdg.[p] and  hard-sphergHS) reference system and successfully calcu-
Fi[p] in Eq. (3) exactly reproduce the corresponding two- lated the phase diagram of the LJ systat].

body direct correlation functionéDCF's), C,®)(r:p) and In the application of the above theory to;£ve used the
ACA(r;p)=CA(r;p)—Co@(r;p), in the limit of a uni- potential separation proposed by Weeks, Chander, and
form density. HereC,® andC® are the DCF’s of the ref- Andersen(WCA) [24].

erence and full systems, respectively. Unique specifications B(r)—B(rg
of the weight functions follow from these requirements and _ '
the substitutions of these results into E@&) and(4b) lead $o()=1 0, r=ro ' (8)
to the implicit equations fop, andp, [20],

r<rg

wherer g is the separation at whicl(r) takes the principal

minimum. For the Girifalco potential we have

Xo=Tro/l2a=1.416 342, where & is the diameter of a spheri-

Dpe cal Cg given by 22=0.71 nm[5].

X Co “(r12:P0) (53 The modified hypernetted-chafiMHNC) theory[25] was
used to calculate the equation of state and the DCF’s of the

J— “ 1
(Po‘P)ﬁfé,eﬁpo):_mf drlf draAp(ry)Ap(ray)

and systems interacting througt(r) and ¢o(r), which are a
1 necessary input to solve Eq&a and(5h) and to determine
(p1—p)Bfi(p1)=— mj drlf droAp(ry)Ap(ry) the liquid-vapor phase boundary. Several versions in the con-
text of the MHNC theory have been proposed, and their dif-
XACP(r15:p1), (5b) ferences consist in dealing with the hard-sphere bridge func-

tion Byg(r) used in this theory. In his study on the phase

where f{o(p)=dfoedp)dp, Fi(p)=0f1(p)ldp, and diagram of _CSO molecular fluid[26], Caccamo has gsed the
Ap(r)=p(r)—p, p being the average density of the solid Brs(r) c_)btalr)ed. from the Ve(Iet-Wels parametrization of the
under consideration. We note that bgth and p, are func- HS radial distribution function27,28, and imposed the
tionals ofp(r) and are determined by solving EqSa) and  thermodynamic consistency between the virial pressure and
(5b), respectively, for a givep(r). The approximate excess the compressibility equations to specify the parameter of

free energy per particle of the solid phase is then given by Brs(r). We took essentially the same approach but solved
the MHNC equation for the full system wit(r) by using

Bfed p1=Bfoed po) + Bf1(p1). (6) the method of Ng29], which is essential for Coulombic
systems and provides an efficient way for other systems with
We have applied the above theory to the inverse-powelong-ranged potentials. In this method the long-range tail of
systems withe(r) =e(o/r)" and found that the theory pre- the DCF due to that of(r), A¢(r) in the present case, is
dicts the fcc-solid-liquid phase boundaries in agreement witlseparated out and we solve the MHNC equation for
the MC results within 5%, although it does not necessarilyC4(r) =C(r) + BA ¢(r). In solving the MHNC equation we
predict the correct equilibrium crystal structuiee., bcc for  used a grid spacingx=0.025k=r/2a) and a grid of 1024
n<7 and fcc fom>7) of the solid coexisting with the liquid points with an extra fine grid spacirgx= 0.0025 in the core
[20]. We have also confirmed that<p and p;~p for a  region whereg(r) or ¢o(r) and henceC(r) exhibit rapid
stabilized solid in the variational calculations described bechanges.
low. The large difference betweep, and p; provides a In the calculations of the free energy of the solid phase in
simple, intuitive explanation for the reason why the MWDA the GMWDA we followed the common practice and used a
and other theories utilizing the thermodynamic mapping on aariational method, in which the density distribution in the
single effective liquid fail for systems with long-ranged or solid was parametrized and given by the sum of the Gauss-
attractive forces. As noted above, the contribufign,[p] is  ians peaked at each site of a periodic latt{d®,]:
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FIG. 1. Comparisons of the free energies of the fcc solig C ~ FIG. 2. Phase boundaries predicted by the present tHébey!
relative to the liquid[Eq. (10)] at T=2100 K calculated by the circles and full lineg Open circles, metastable liquid-vapor binodal
present GMWDA with the WCA reference systei®) (full line) lines; triangles, rectilinear rule used to locate the critical point
and by the method of using the HS reference system with the VW(cross; dashed line, freezing line determined by the one-phase cri-
DCF (HS-VW) and the PY DCRHS-PY). The result obtained us- terion[Eq. (11)].

ing the SPT forgBfi[p] [EQ. (7)] (dotted ling is almost indistin- . . .
guishable from thelGMWDA result. tation. Both of thes@@A f(p) decrease too rapidly with and

yield too large negative contributions to the pressures of the
o\ 32 solid at high densities to establish a phase equilibrium of the
p(r)=(—) 2 exd — a(r—R;)?]. (9) solid and the liquid. The previous regxa}mlnatlong of.the
m i MWDA and the generalized effective-liquid approximation
(GELA) of Lutsko and Bau$31] revealed that the use of an
Then, the variational principle for the free energy reduces taiccurate DCF in place of the approximate PY DCF in these
a minimization of F[p]=Nf(p;@) with respect toa. We  theories slightly worsens the predicted HS freezing param-
assumed the fcc crystal structure for thg,Golid phase. eters, which is an unfavorable feature from a theoretical
Figure 1 illustrates the calculated free energies of theyoint of view [32]. Furthermore, such a feature becomes
solid relative to the liquid with the same density, which playsmuch more serious when the HS system is used as the ref-
a crucial role in determining the solid-liquid phase boundary:erence system for systems with long-ranged potentials, as
actually confirmed for the OCP32]. Such a situation is com-
BAT(p)= Bfsaidp) — Bfig(p), (100 mon to Gg, and it seems that the defect of using the HS
reference system is compensated by that of the approximate
where fjiq(p)=f(p;a=0) and fgyi(p)=F(p;a), with @  PY DCF, but we need further examinations to clarify the
minimizing f. The most popular practice in the approachdefect of using the HS reference system fog,Cln the
described above has been to employ the HS reference systdgllowing we consider only the results of the GMWDA
[21-23, and Fig. 1 also contains the results of such calcubased on the WCA reference systé@ and the input data
lations for comparison. In these calculations the referencebtained by the thermodynamically consistent integral equa-
HS parameters were determined by applying the method afon method.
Andersen and co-workef49,30 to the WCA reference sys- The phase boundary was determined by enforcing equal-
tem (8). The corresponding MWDA equatio5a) was ity of pressures and chemical potentials in the two coexisting
solved by using both the virtually exact Verlet-WéMW)  phases at fixed temperature. The phase diagramggical-
[27,28 and the approximate Percus-Yevi¢RY) DCF's.  culated in this way is shown in Fig. 2. We find that the
Hereafter, these types of calculations are denoted HS-VWreezing line crosses the liquid-vapor binodal lines at
and HS-PY, respectively. The use of the PY DCF has beerr~1940 K slightly (=20 K) below the estimated liquid-
justified based on the observation that for a realistic solidsapor critical temperatur@,, and a liquid phase does exist
with large « the solutionpg to Eq.(5a) is much smaller than in a very narrow range of temperatures. This result is in
p, the average density of the solid under consideration, angualitative agreement with the MD simulatiof4], which
for such ap, the PY DCF is quite reasonable. In all these have predicted the existence of a liquid phase in a much
calculations the accurate Carnahan-Starlibhg] result was wider range, i.e., between 1700 and 1950 K. The liquid-
used for fgefp)=Tfusedp) in (58 and the contribution vapor coexisting region is determined solely by the equation
fi[p] was calculated by the SPT7) with the use of the of state of uniform fluids, and the present and other results
accurateAC(r;p) obtained from the present MHNC result [4,29] based on the thermodynamically consistent integral
for C(r;p) and the VW result foiCy(r;p)=Cps(r;p). We  equation methods are quite similar, suggesting that the result
find in Fig. 1 that the HS-VW and the HS-PY yield quite of this part is well established. The liquid-vapor coexisting
different results folBAf(p), contrary to the previous expec- region predicted by the MD simulations is much narrower
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parison. We confirmed thats,,=0 occurs atp=0.499 for

the HS system, in good agreement with the freezing point,
7= 0.494, obtained by the MC simulatiof85]. On the other
hand, the freezindand melting point of the OCP deter-
mined by Eq(11) falls atI’~ 230, which is much larger than
the MC resultsI'~170-180[36,37]. HereI is the usual
plasma parameter proportional pd".

Next, we are concerned with the MC simulation results of
Hagenet al. [3], which are qualitatively different from the
MD and the present results. We note that in the MC simula-
tions the pair potentiad(r) was truncated at=20, where
o is the distance at whiclp(r) crosses zero, and the pre-
dicted T was~1800 K, about 10% lower than the present
and the MD simulation results. This oW might be a con-
sequence of the truncation of the potential as suggested by

FIG. 3. Multiparticle contribution to the excess entropy of the the MC simulations for the LJ fluids, in which¢ is about
hard-sphere$HS) and the classical one-component plasi@&P. 20% lowered by truncatingand shifting the LJ potential at

r=2.50 [38]. Since the long-range tail of thegpair po-
than these theoretical results, and it seems that the MD simdential is much smaller in magnitude than that of the LJ
lations have detected the boundary of absolute instabilitypotential, such a truncation effect ofx should be much
i.e., negative compressibility. The present result for thesmaller in G but may not necessarily be ignored. In fact, if
freezing line falls at somewhat lower densities than the MDwe shift upwards the MC result of the liquid-vapor coexist-
result, leading to a narrower range of a liquid phase. ing region about 10%, the resulting phase diagram is quite

We note that the predicted phase diagram gf i8 rather  similar to the present result. More quantitative investigations
sensitive to the input data within the GMWDA. Prior to the of the truncation effect on the phase diagram qf @re in
present work we tried the input data obtained by the variaprogress.
tional MHNC [33]. The pressure and the compressibility  Our final concern is the experimental feasibility of testing
equations of state obtained by this method are different, anthe theoretical predictions. The estimated liquid-vapor criti-
the inconsistency is larger at higher densities. While thecal pressure is~32 bar and not so high as to cause any
liquid-vapor critical points estimated by using these inputexperimental difficulty, but the temperatures of interest
data are almost the same as those in Fig. 2, the predictgd > 1900 K) are not easily accessible experimentally. As for
freezing lines are quite different. In fact, if we use the inputthe validity of the model of rigid G, molecules, the recent
data from the pressure equation, the freezing line passesh initio MD simulations have predicted that g;§gmolecule
about 100 K above the critical point, whereas it moves dowris stable against fragmentation up to 450039]. However,

a great deal, yielding the triple point &t1800 K, if we use  polymerizations of G, molecules seem to occur well below
the input data from the compressibility equation. These rethe temperatures of interestO], which could be practically
sults suggest the importance of using thermodynamicallfhe most serious hindrance to experiments.

consistent input data. We have applied the GMWDA combined with an integral

Figure 2 also contains the freezing line determined by thequation method to the calculations of the phase diagram of
one-phase criterion introduced by Giaquinta and Gii&&,  the rigid C5, molecules and found that the results support the
existence of a liquid phase, albeit in a very narrow range of
temperatures. However, the result is still not very conclusive,
since it might depend rather sensitively on the theoretical
ingredient, especially on the DFT of freezing used to calcu-
late the equation of state of the solid phase. We may safely
conclude that we have confirmed that the rigigh @ a criti-
cal substance that might have a liquid phase or not. More
systematic investigations will be required to clarify the inter-
relation between the nature of pair potentials and the phase
behavior, and such a theoretical investigation on the systems

0.5
(Inr)/10

0.6

ASey=Sex— S22 =0. (12)

Heres,, is the exact excess entropy afs@) the two-particle
contribution tos,, given by

SG=~bkop [ drfgninlg(n1-(g(n-11}, (12

whereg(r) is the radial distribution function. The empirical

criterion Eq.(11) has been found to give a good prediction of
the HS freezind 34] and used by Caccamo in the study of
the phase diagram of g [26]. The present result for the
freezing line determined by Eq11) is essentially the same

with n-m potentials is in progress as a reinforcement of the
simulation studies of HafskjolfL0].
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